Mume AI Logo
  • Models
  • Library
Your chats
  • Log in to view chats
Mume AI

Models

286 models

OpenAI: GPT-5.1-Codex-Max

GPT-5.1-Codex-Max is OpenAI’s latest agentic coding model, designed for long-running, high-context software development tasks. It is based on an updated version of the 5.1 reasoning stack and trained on agentic workflows spanning software engineering, mathematics, and research. GPT-5.1-Codex-Max delivers faster performance, improved reasoning, and higher token efficiency across the development lifecycle.

by Openai|400K context|$1.25/M input tokens|$10.00/M output tokens

Mistral: Mistral Large 3 2512

Mistral Large 3 2512 is Mistral’s most capable model to date, featuring a sparse mixture-of-experts architecture with 41B active parameters (675B total), and released under the Apache 2.0 license.

by Mistralai|262K context|$0.50/M input tokens|$1.50/M output tokens

Arcee AI: Trinity Mini

Trinity Mini is a 26B-parameter (3B active) sparse mixture-of-experts language model featuring 128 experts with 8 active per token. Engineered for efficient reasoning over long contexts (131k) with robust function calling and multi-step agent workflows.

by Arcee-ai|131K context|$0.04/M input tokens|$0.15/M output tokens

DeepSeek: DeepSeek V3.2

DeepSeek-V3.2 is a large language model designed to harmonize high computational efficiency with strong reasoning and agentic tool-use performance. It introduces DeepSeek Sparse Attention (DSA), a fine-grained sparse attention mechanism that reduces training and inference cost while preserving quality in long-context scenarios. A scalable reinforcement learning post-training framework further improves reasoning, with reported performance in the GPT-5 class, and the model has demonstrated gold-medal results on the 2025 IMO and IOI. V3.2 also uses a large-scale agentic task synthesis pipeline to better integrate reasoning into tool-use settings, boosting compliance and generalization in interactive environments. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)

by Deepseek|164K context|$0.27/M input tokens|$0.40/M output tokens

Prime Intellect: INTELLECT-3

INTELLECT-3 is a 106B-parameter Mixture-of-Experts model (12B active) post-trained from GLM-4.5-Air-Base using supervised fine-tuning (SFT) followed by large-scale reinforcement learning (RL). It offers state-of-the-art performance for its size across math, code, science, and general reasoning, consistently outperforming many larger frontier models. Designed for strong multi-step problem solving, it maintains high accuracy on structured tasks while remaining efficient at inference thanks to its MoE architecture.

by Prime-intellect|131K context|$0.20/M input tokens|$1.10/M output tokens

Anthropic: Claude Opus 4.5

Claude Opus 4.5 is Anthropic’s frontier reasoning model optimized for complex software engineering, agentic workflows, and long-horizon computer use. It offers strong multimodal capabilities, competitive performance across real-world coding and reasoning benchmarks, and improved robustness to prompt injection. The model is designed to operate efficiently across varied effort levels, enabling developers to trade off speed, depth, and token usage depending on task requirements. It comes with a new parameter to control token efficiency, which can be accessed using the OpenRouter Verbosity parameter with low, medium, or high. Opus 4.5 supports advanced tool use, extended context management, and coordinated multi-agent setups, making it well-suited for autonomous research, debugging, multi-step planning, and spreadsheet/browser manipulation. It delivers substantial gains in structured reasoning, execution reliability, and alignment compared to prior Opus generations, while reducing token overhead and improving performance on long-running tasks.

by Anthropic|200K context|$5.00/M input tokens|$25.00/M output tokens

AllenAI: Olmo 3 32B Think

Olmo 3 32B Think is a large-scale, 32-billion-parameter model purpose-built for deep reasoning, complex logic chains and advanced instruction-following scenarios. Its capacity enables strong performance on demanding evaluation tasks and highly nuanced conversational reasoning. Developed by Ai2 under the Apache 2.0 license, Olmo 3 32B Think embodies the Olmo initiative’s commitment to openness, offering full transparency across weights, code and training methodology.

by Allenai|66K context|$0.30/M input tokens|$0.45/M output tokens

Google: Gemini 3 Pro Preview

Gemini 3 Pro is Google’s flagship frontier model for high-precision multimodal reasoning, combining strong performance across text, image, video, audio, and code with a 1M-token context window. Reasoning Details must be preserved when using multi-turn tool calling, see our docs here: https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks. It delivers state-of-the-art benchmark results in general reasoning, STEM problem solving, factual QA, and multimodal understanding, including leading scores on LMArena, GPQA Diamond, MathArena Apex, MMMU-Pro, and Video-MMMU. Interactions emphasize depth and interpretability: the model is designed to infer intent with minimal prompting and produce direct, insight-focused responses. Built for advanced development and agentic workflows, Gemini 3 Pro provides robust tool-calling, long-horizon planning stability, and strong zero-shot generation for complex UI, visualization, and coding tasks. It excels at agentic coding (SWE-Bench Verified, Terminal-Bench 2.0), multimodal analysis, and structured long-form tasks such as research synthesis, planning, and interactive learning experiences. Suitable applications include autonomous agents, coding assistants, multimodal analytics, scientific reasoning, and high-context information processing.

by Google|1M context|$2.00/M input tokens|$12.00/M output tokens

OpenAI: GPT-5.1

GPT-5.1 is the latest frontier-grade model in the GPT-5 series, offering stronger general-purpose reasoning, improved instruction adherence, and a more natural conversational style compared to GPT-5. It uses adaptive reasoning to allocate computation dynamically, responding quickly to simple queries while spending more depth on complex tasks. The model produces clearer, more grounded explanations with reduced jargon, making it easier to follow even on technical or multi-step problems. Built for broad task coverage, GPT-5.1 delivers consistent gains across math, coding, and structured analysis workloads, with more coherent long-form answers and improved tool-use reliability. It also features refined conversational alignment, enabling warmer, more intuitive responses without compromising precision. GPT-5.1 serves as the primary full-capability successor to GPT-5

by Openai|400K context|$1.25/M input tokens|$10.00/M output tokens

OpenAI: GPT-5.1 Chat

GPT-5.1 Chat (AKA Instant is the fast, lightweight member of the 5.1 family, optimized for low-latency chat while retaining strong general intelligence. It uses adaptive reasoning to selectively “think” on harder queries, improving accuracy on math, coding, and multi-step tasks without slowing down typical conversations. The model is warmer and more conversational by default, with better instruction following and more stable short-form reasoning. GPT-5.1 Chat is designed for high-throughput, interactive workloads where responsiveness and consistency matter more than deep deliberation.

by Openai|128K context|$1.25/M input tokens|$10.00/M output tokens

OpenAI: GPT-5.1-Codex

GPT-5.1-Codex is a specialized version of GPT-5.1 optimized for software engineering and coding workflows. It is designed for both interactive development sessions and long, independent execution of complex engineering tasks. The model supports building projects from scratch, feature development, debugging, large-scale refactoring, and code review. Compared to GPT-5.1, Codex is more steerable, adheres closely to developer instructions, and produces cleaner, higher-quality code outputs. Reasoning effort can be adjusted with the `reasoning.effort` parameter. Read the [docs here](https://openrouter.ai/docs/use-cases/reasoning-tokens#reasoning-effort-level) Codex integrates into developer environments including the CLI, IDE extensions, GitHub, and cloud tasks. It adapts reasoning effort dynamically—providing fast responses for small tasks while sustaining extended multi-hour runs for large projects. The model is trained to perform structured code reviews, catching critical flaws by reasoning over dependencies and validating behavior against tests. It also supports multimodal inputs such as images or screenshots for UI development and integrates tool use for search, dependency installation, and environment setup. Codex is intended specifically for agentic coding applications.

by Openai|400K context|$1.25/M input tokens|$10.00/M output tokens

OpenAI: GPT-5.1-Codex-Mini

GPT-5.1-Codex-Mini is a smaller and faster version of GPT-5.1-Codex

by Openai|400K context|$1.50/M input tokens|$6.00/M output tokens